Закон сохранения количества движения (закон сохранения импульса). Закон сохранения главного момента количеств движения Закон сохранения импульса

1. Если главный вектор всех внешних сил системы равен нулю (), то количество движения системы постоянно по величине и направлению.

2. Если проекция главного вектора всех внешних сил системы на какую-либо ось равна нулю (
), то проекция количества движения системы на эту ось является постоянной величиной.

Теорема о движении центра масс.

Теорема Центр масс системы движется так же, как и материальная точка, масса которой равна массе всей системы, если на точку действуют все внешние силы, приложенные к рассматриваемой механической системе.


, следовательно

Момент количества движения системы.

Моментом количества движения системы материальных точекотносительно некоторого центраназывается векторная сумма моментов количества движения отдельных точек этой системы относительно того же центра

Моментом количества движения системы материальных точек
относительно какой-либо оси
, проходящей через центр, называется проекция вектора количества движения
на эту ось
.

Момент количества движения твердого тела относительно оси вращения при вращательном движении твердого тела.

Вычислим момент количества движения твердого тела относительно оси вращения.

Момент количества движения твердого тела относительно оси вращения при вращательном движении равен произведению угловой скорости тела на его момент инерции относительно оси вращения.

Теорема об изменении момента количества движения системы.

Теорема. Производная по времени от момента количества движения системы, взятого относительно какого-нибудь центра, равна векторной сумме моментов внешних сил, действующих на систему относительно того же центра.

(6.3)

Доказательство: Теорема об изменении момента количества движения для
точки имеет вид:

,

Сложим все уравнений и получим:


или
,

что и требовалось доказать.

Теорема. Производная по времени от момента количества движения системы, взятого относительно какой-либо оси, равна векторной сумме моментов внешних сил, действующих на систему относительно той же оси.

Для доказательства достаточно спроектировать векторное уравнение (6.3) на эту ось. Для оси
это будет выглядеть так:.

(6.4)

Теорема об изменении момента количества движения системы относительно центра масс. (без доказательства)

Для осей движущихся поступательно вместе с центром масс системы, теорема об изменении момента количества движения системы относительно центра масс сохраняет тот же вид, что и относительно неподвижного центра.

Модуль 2. Сопротивление материалов.

Тема 1 растяжение-сжатие, кручение, изгиб.

Деформации рассматриваемого тела (элементов конструкции) возникают от приложения внешней силы. При этом изменяются расстояния между частицами тела, что в свою очередь приводит к изменению сил взаимного притяжения между ними. Отсюда, как следствие, возникают внутренние усилия. При этом внутренние усилия определяются универсальным методом сечений (или метод разреза).

Известно, что различают силы внешние и силы внутренние. Внешние усилия (нагрузки) – это количественная мера взаимодействия двух различных тел. К ним относятся и реакции в связях. Внутренние усилия – это количественная мера взаимодействия двух частей одного тела, расположенных по разные стороны сечения и вызванные действием внешних усилий. Внутренние усилия возникают непосредственно в деформируемом теле.

На рис.1 приведена расчетная схема бруса с произвольной комбинацией внешней нагрузки образующую равновесную систему сил:

Сверху вниз: упругое тело, левая отсеченная часть, правая отсеченная частьРис.1. Метод сечений.

При этом, реакции связей определяются из известных уравнений равновесия статики твердого тела:

где х 0 , у 0 , z 0 - базовая система координат осей.

Мысленное разрезание бруса на две части произвольным сечением А (рис.1 a), приводит к условиям равновесия каждой из двух отсеченных частей (рис.1 б,в). Здесь {S’ } и {S" }- внутренние усилия, возникающих соответственно в левой и правой отсеченных частях вследствие действия внешних усилий.

При составлении мысленно отсеченных частей, условие равновесия тела обеспечивается соотношением:

Так как исходная система внешних сил (1) эквивалентна нулю, получаем:

{S ’ } = – {S ” } (3)

Это условие соответствует четвертой аксиоме статики о равенстве сил действия и противодействия.

Используя общую методологию теоремы Пуансо о приведении произвольной системы сил к заданному центру и выбрав за полюс приведения центр масс, сечения А " , точку С " , систему внутренних усилий для левой части {S } сводим к главному вектору и главному моментувнутренних усилий. Аналогично делается для правой отсеченной части, где положение центра масс сеченияА”; определяется, соответственно, точкой С " (рис.1 б,в).

Таким образом главный вектор и главный момент системы внутренних усилий, возникающие в левой, условно отсеченной части бруса, равны по величине и противоположны по направлению главному вектору и главному моменту системы внутренних усилий, возникающих в правой условно отсеченной части.

График (эпюра) распределения численных значений главного вектора и главного момента вдоль продольной оси бруса и предопределяют, прежде всего, конкретные вопросы прочности, жесткости и надежности конструкций.

Определим механизм формирования компонент внутренних усилий, которые характеризуют простые виды сопротивлений: растяжение-сжатие, сдвиг, кручение и изгиб.

В центрах масс исследуемых сечений С" или С " зададимся соответственно левой (с", х", у", z") или правой (с", х", у", z”) системами координатных осей (рис.1 б, в), которые в отличие от базовой системы координат x, у, z будем называть "следящими". Термин обусловлен их функциональным назначением. А именно: отслеживание изменения положения сечения А (рис.1 а) при условном смещении его вдоль продольной оси бруса, например при: 0 х’ 1 а, аx’ 2 b и т.д., где а и b - линейные размеры границ исследуемых участков бруса.

Зададимся положительными направлениями проекций главного вектора илии главного моментаилина координатные оси следящей системы (рис.1 б, в):

{N ’ , Q ’ y , Q ’ z } {M ’ x , M ’ y , M ’ z }

{N ” , Q ” y , Q ” z } {M ” x , M ” y , M ” z }

При этом положительные направления проекций главного вектора и главного момента внутренних усилий на оси следящей системы координат соответствуют правилам статики в теоретической механике: для силы - вдоль положительного направления оси, для момента - против вращения часовой стрелки при наблюдении со стороны конца оси. Они классифицируются следующим образом:

N x - нормальная сила, признак центрального растяжения или сжатия;

М x - внутренний крутящий момент, возникает при кручении;

Q z , Q у - поперечные или перерезывающие силы – признак сдвиговых деформаций,

М у , М z - внутренние изгибающие моменты, соответствуют изгибу.

Соединение левой и правой мысленно отсеченных частей бруса приводит к известному (3) принципу равенства по модулю и противоположной направленности всех одноименных компонент внутренних усилий, а условие равновесии бруса определяется в виде:

Как естественное следствие из соотношений 3,4,5 полученное условие является необходимым для того, чтобы одноименные компоненты внутренних усилий попарно образовали подсистемы сил эквивалентные нулю:

1. {N ’ , N ” } ~ 0 > N ’ = – N

2. {Q y , Q y } ~ 0 > Q y = – Q y

3. {Q z , Q z } ~ 0 > Q z = – Q z

4. {М x , M x } ~ 0 > М x = – M x

5. {M y , M y } ~ 0 > M y = – M y

6. {М z , M z } ~ 0 > М z = – M z

Общее число внутренних усилий (шесть) в статически определимых задачах совпадает с количеством уравнений равновесия для пространственной системы сил и связано с числом возможных взаимных перемещений одной условно отсеченной части тела по отношению к другой.

Искомые усилия определяются из соответствующих уравнений для любой из отсеченных частей в следящей системе координатных осей. Так, для любой отсеченной части соответствующие уравнения равновесия приобретают вид;

1. ix = N + P 1x + P 2x + … + P kx = 0 > N

2. iy = Q y + P 1y + P 2y + … + P ky = 0 > Q y

3. iz = Q + P 1z + P 2z + … + P kz = 0 > Q z

4. x (P i ) = M x + M x (P i ) + … + M x (P k ) = 0 > M x

5. y (P i ) = M y + M y (P i ) + … + M y (P k ) = 0 > M y

6. z (P i ) = M z + M z (P i ) + … + M z (P k ) = 0 > M z

Здесь для простоты обозначений системы координат с" х" у" z" и с" х" у" т" заменены единой оxуz .

Из теоремы об изменении количества движения системы можно получить следующие важные следствия.

1. Пусть сумма всех внешних сил, действующих на систему, равна нулю:

Тогда из уравнения (20) следует, что при этом Таким образом, если сумма всех внешних сил, действующих на систему, равна нулю, то вектор количества движения системы будет постоянен по модулю и направлению.

2. Пусть внешние силы, действующие на систему, таковы, что сумма их проекций на какую-нибудь ось (например, ) равна нулю:

Тогда из уравнений (20) следует, что при этом Таким образом, если сумма проекций всех действующих внешних сил на какую-нибудь ось равна нулю, то проекция количества движения системы на эту ось есть величина постоянная.

Эти результаты и выражают закон сохранения количества движения системы. Из них следует, что внутренние силы изменить количество движения системы не могут. Рассмотрим некоторые примеры.

Явление отдачи или отката. Если рассматривать винтовку и пулю как одну систему, то давление пороховых газов при выстреле будет силой внутренней. Эта сила не может изменить количество движения системы, равное до выстрела кулю. Но так как пороховые газы, действуя на пулю, сообщают ей некоторое количество движения, направленное вперед, то они одновременно должны сообщить винтовке такое же количество движения в обратном направлении. Это вызовет движение винтовки назад, т. е. так называемую отдачу. Аналогичное явление получается при стрельбе из орудия (откат).

Работа гребного винта (пропеллера). Винт сообщает некоторой массе воздуха (или воды) движение вдоль оси винта, отбрасывая эту массу назад. Если рассматривать отбрасываемую массу и самолет (или судно) как одну систему, то силы взаимодействия винта и среды, как внутренние, не могут изменить суммарное количество движения этой системы. Поэтому при отбрасывании массы воздуха (воды) назад самолет (или судно) получает соответствующую скорость движения вперед, такую, что общее количество движения рассматриваемой системы остается равным нулю, так как оно было нулем до начала движения.

Аналогичный эффект достигается действием весел или гребных колес

Реактивное движение. В реактивном снаряде (ракете) газообразные продукты горения топлива с большой скоростью выбрасываются из отверстия в хвостовой части ракеты (из сопла ракетного двигателя). Действующие при этом силы давления будут силами внутренними и не могут изменить количество движения системы ракета - продукты горения топлива. Но так как вырывающиеся газы имеют известное количество движения, направленное назад, то ракета получает при этом соответствующую скорость, направленную вперед. Величина этой скорости будет определена в § 114.

Обращаем внимание на то, что винтовой двигатель (предыдущий пример) сообщает объекту, например самолету, движение за счет отбрасывания назад частиц той среды, в которой он движется. В безвоздушном пространстве такое движение невозможно. Реактивный же двигатель сообщает движение за счет отброса назад масс, вырабатываемых в самом двигателе (продукты горения). Движение это в равной мере возможно и в воздухе, и в безвоздушном пространстве.

При решении задач применение теоремы позволяет исключить из рассмотрения все внутренние силы. Поэтому рассматриваемую систему надо стараться выбирать так, чтобы все (или часть) заранее неизвестных сил сделать внутренними.

Закон сохранения количества движения удобно применять в тех случаях, когда по изменению поступательной скорости одной части системы надо определить скорость другой части. В частности, этот закон широко используется в теории удара.

Задача 126. Пуля массой , летящая горизонтально со скоростью и, попадает в установленный на тележке ящик с песком (рис 289). С какой скоростью начнет двигаться тележка после удара, если масса тележки вместе с ящиком равна

Решение. Будем рассматривать пулю и тележку как одну систему Это позволит при решении задачи исключить силы, которые возникают при ударе пули о ящик. Сумма проекций приложенных к системе внешних сил на горизонтальную ось Ох равиа нулю. Следовательно, или где - количество движения системы до удара; - после удара.

Так как до удара тележка неподвижна, то .

После удара тележка и пуля движутся с общей скоростью, которую обозначим через v. Тогда .

Приравнивая правые части выражений , найдем

Задача 127. Определить скорость свободного отката орудия, если вес откатывающихся частей равен Р, вес снаряда , а скорость снаряда по отношению к каналу ствола равна в момент вылета .

Решение. Для исключения неизвестных сил давления пороховых газов рассмотрим снаряд и откатывающиеся части как одну систему.

Обратимся к основному уравнению динамики вращательного движения

и рассмотрим частный случай, когда на тело либо вовсе не действуют внешние силы, либо они таковы, что их равнодействующая не дает момента относительно оси вращения Тогда

Но если изменение величины равно нулю, то, следовательно, сама величина остается постоянной:

Рис. 66. Сальто-мортале.

Итак, если на тело не действуют внешние силы (или результирующий момент их относительно оси вращения равен нулю), то момент количества движения тела относительно оси вращения остается неизменным. Этот закон носит название закона сохранения момента количества движения относительно оси вращения

Приведем несколько примерев, иллюстрирующих закон сохранения момента количества движения.

Гимнаст во время прыжка через голову (рис. 66) поджимает к туловищу руки и ноги. Этим он уменьшает свой момент инерции,

а так как произведение должно оставаться неизменным, то угловая скорость вращения возрастает, и в краткий промежуток времени, пока гимнаст находится в воздухе, он успевает сделать полный оборот.

Шарик привязан к нити, наматываемой на палку; по мере того как уменьшается длина нити, уменьшается момент инерции шарика и, следовательно, возрастает угловая скорость.

Рис. 67 Вращение человека, стоящего на скамье Жуковского. ускорится, если он опустит руки и замедлится если он их поднимет.

Рис. 68. Если мы поднимем велосипедное колесо над головой и приведем его во вращение, то сами вместе с платформой начнем вращаться в противоположную сторону.

Ряд интересных опытов можно проделать, встав на платформу, вращающуюся на шарикоподшипнике (скамья Жуковского). На рис. 67 и 68 изображены некоторые из этих опытов.

Сопоставляя уравнения, выведенные в последних параграфах, с законами прямолинейного поступательного движения, легко заметить, что формулы, определяющие вращательное движение около неподвижной оси, аналогичны формулам для прямолинейного поступательного движения.

В следующей таблице сопоставлены основные величины и уравнения, определяющие эти движения:

(см. скан)

Гироскопы. Реактивный гироскопический эффект. Твердое тело, вращающееся с большой угловой скоростью вокруг оси полной симметрии (свободной оси), называют гироскопом. По закону сохранения вектора момента количества движения гироскоп стремится сохранить направление своей оси вращения неизменным в пространстве и проявляет тем большую устойчивость (т. е. оказывает тем большее сопротивление повороту оси вращения), чем больше его момент инерции и чем больше угловая скорость вращения.

Когда мы, удерживая на вытянутых руках какое-либо массивное неподвижное тело, сообщаем ему движение, например слева направо, то развиваемая телом сила инерции двигает нас в противоположном направлении. Проявление сил инерции вращающегося гироскопа, когда мы поворачиваем его ось вращения, оказывается более сложным и на первый взгляд неожиданным. Так, если мы, удерживая в руках горизонтально направленную ось вращения гироскопа, станем один конец оси приподнимать, а другой опускать, т. е. поворачивать ось в вертикальной плоскости, то почувствуем, что ось оказывает давление на руки не в вертикальной, а в горизонтальной плоскости, прижимая одну нашу руку и оттягивая другую. Если при рассматривании справа вращение гироскопа видно происходящим по движению часовой стрелки (т. е. момент количества движения гироскопа направлен горизонтально налево), то попытка поднять левый конец оси, опуская вниз правый, вызывает движение левого конца оси в горизонтальной плоскости от нас, а правого - на нас.

Такая реакция гироскопа (так называемый гироскопический эффект) объясняется стремлением гироскопа сохранить неизменным свой момент количества движения и притом сохранить его неизменным не только по величине, но и по направлению. Действительно, чтобы при описанном выше повороте оси вращения гироскопа в вертикальной плоскости на угол а (рис 69) момент количества движения геометрически оставался неизменным, гироскоп должен приобрести дополнительное вращение вокруг вертикальной оси с моментом количества движения таким, что геометрически

По указанной причине вращающийся гироскоп, уравновешенный на подвижной оси гирей (рис. 70), приобретает дополнительно

вращение вокруг вертикальной оси, если гирю, уравновешивавшую гироскоп, немного отодвинуть от точки опоры оси (перевешивая, гиря сообщает оси некоторый наклон, что и вызывает обращение оси гироскопа вокруг точки опоры в направлении, которое соответствует направлению вектора на рис. 69).

По той же причине ось волчка приобретает вследствие опрокидывающего действия силы тяжести круговое движение, которое называют прецессией (рис. 71).

Итак, если к вращающемуся гироскопу приложить пару сил, стремящуюся повернуть его около оси, перпендикулярной к оси вращения, то гироскоп действительно станет поворачиваться, но только вокруг третьей оси, перпендикулярной к первым двум. Чтобы повернуть вращающийся гироскоп (например, в направлении как показано на рис. 72), нужно к оси гироскопа приложить вращающий момент в плоскости, перпендикулярной к направлению поворота.

Рис. 71. Схема движения волчка.

Более детальный анализ явлений, аналогичных описанным выше, показывает, что гироскоп стремится расположить ось своего вращения таким образом, чтобы она образовала возможно меньший угол с осью вынуждаемого вращения и чтобы оба вращения совершались в одном и том же направлении.

Это свойство гироскопа используется в гироскопическом компасе, получившем широкое распространение в особенности в военном флоте. Гирокомпас представляет собой быстро вращающийся волчок (мотор трехфазного тока, делающий до 25 000 об/мин), который на особом поплавке плавает в сосуде со ртутью и ось которого устанавливается в плоскости меридиана. В данном случае источником внешнего вращающего момента является суточное вращение Земли вокруг ее оси. Под его действием ось вращения гироскопа стремится совпасть по направлению с осью вращения Земли, а так как вращение Земли действует на гироскоп непрерывно, то ось гироскопа, наконец, и принимает это положение, т. е. устанавливается вдоль меридиана, и продолжает в нем оставаться совершенно так же, как обычная магнитная стрелка.

Гироскопы часто применяют в качестве стабилизаторов. Их устанавливают для уменьшения качки на океанских пароходах.

Были сконструированы также стабилизаторы для однорельсовых железных дорог; массивный быстро вращающийся гироскоп, помещаемый внутри вагона однорельсовой дороги, препятствует опрокидыванию вагона. Роторы для гироскопических стабилизаторов изготовляют весом от 1 до 100 и более тонн.

В торпедах гироскопические приборы, автоматически действуя на рулевое управление, обеспечивают прямолинейность движения торпеды в направлении выстрела.

Рис. 73. Прецессия земной оси.

Суточное вращение Земли делает ее подобной гироскопу. Так как Земля представляет собой не шар, а фигуру, близкую к эллипсоиду, то притяжение Солнца создает равнодействующую, не проходящую через центр масс Земли (как было бы в случае шара). Вследствие этого возникает вращающий момент, который стремится повернуть ось вращения Земли перпендикулярно к плоскости ее орбиты (рис. 73). В связи с этим земная ось испытывает прецессионное движение (с полным оборотом примерно за 25 800 лет).


Просмотр: эта статья прочитана 23265 раз

Pdf Выберите язык... Русский Украинский Английский

Краткий обзор

Полностью материал скачивается выше, предварительно выбрав язык


Механической системой материальных точек или тел называется такая их совокупность, в которой положение и движение каждой точки (или тела) зависит от положения и движения остальных.
Материальное тело рассматривается, как система материальных точек (частиц), которые образуют это тело.
Внешними силами называют такие силы, которые действуют на точки или тела механической системы со стороны точек или тел, которые не принадлежат данной системе.
Внутренними силами , называют такие силы, которые действуют на точки или тела механической системы со стороны точек или тел той же системы, т.е. с которыми точки или тела данной системы взаимодействуют между собой.
Внешние и внутренние силы системы, в свою очередь могут быть активными и реактивными
Масса системы равняется алгебраической сумме масс всех точек или тел системыВ однородном поле тяжести, для которого, вес любой частицы тела пропорционален ее массе. Поэтому распределение масс в теле можно определить по положению его центра тяжести - геометрической точки С , координаты которой называют центром масс или центром инерции механической системы
Теорема о движении центра масс механической системы : центр масс механической системы движется как материальная точка, масса которой равняется массе системы, и к которой приложены все внешние силы, действующие на систему
Выводы:

  1. Механическую систему или твердое тело можно рассматривать как материальную точку в зависимости от характера ее движения, а не от ее размеров.
  2. Внутренние силы не учитываются теоремой о движении центра масс.
  3. Теорема о движении центра масс не характеризует вращательное движение механической системы, а только поступательное

Закон о сохранении движения центра масс системы:
1. Если сумма внешних сил (главный вектор) постоянно равен нулю, то центр масс механической системы находится в покое или движется равномерно и прямолинейно.
2. Если сумма проекций всех внешних сил на какую-нибудь ось равняется нулю, то проекция скорости центра масс системы на эту же ось величина постоянная.

Теорема об изменении количества движения.

Количество движения материальной точк и - векторная величина, которая равняется произведению массы точки на вектор ее скорости.
Единицей измерения количества движения есть (кг м/с).
Количество движения механической системы - векторная величина, равняющаяся геометрической сумме (главному вектору) количества движения всех точек системы.или количество движения системы равняется произведению массы всей системы на скорость ее центра масс
Когда тело (или система) движется так, что ее центр масс неподвижен, то количество движения тела равняется нулю (пример, вращение тела вокруг неподвижной оси, которая проходит через центр масс тела).
Если движение тела сложное, то не будет характеризовать вращательную часть движения при вращении вокруг центра масс. Т.е., количество движения характеризует только поступательное движение системы (вместе с центром масс).
Импульс силы характеризует действие силы за некоторый промежуток времени.
Импульс силы за конечный промежуток времени определяется как интегральная сумма соответствующих элементарных импульсов
Теорема об изменении количества движения материальной точки :
(в дифференциальной форме): Производная за временем от количества движения материальной точки равняется геометрической сумме действующих на точки сил
(в интегральной форме): Изменение количества движения за некоторый промежуток времени равняется геометрической сумме импульсов сил, приложенных к точке за тот же промежуток времени.

Теорема об изменении количества движения механической системы
(в дифференциальной форме): Производная по времени от количества движения системы равняется геометрической сумме всех действующих на систему внешних сил.
(в интегральной форме): Изменение количества движения системы за некоторый промежуток времени равняется геометрической сумме импульсов, действующих на систему внешних сил, за тот же промежуток времени.
Теорема позволяет исключить из рассмотрения заведомо неизвестные внутренние силы.
Теорема об изменении количества движения механической системы и теорема о движении центра масс являются двумя разными формами одной теоремы.
Закон сохранения количества движения системы.

  1. Если сумма всех внешних сил, действующих на систему, равняется нулю, то вектор количества движения системы будет постоянным по направлению и по модулю.
  2. Если сумма проекций всех действующих внешних сил на любую произвольную ось равняется нулю, то проекция количества движения на эту ось является величиной постоянной.

Законы сохранения свидетельствуют, что внутренние силы не могут изменить суммарное количество движения системы.

  1. Классификация сил, действующих на механическую систему
  2. Свойства внутренних сил
  3. Масса системы. Центр масс
  4. Дифференциальные уравнения движения механической системы
  5. Теорема о движении центра масс механической системы
  6. Закон о сохранении движения центра масс системы
  7. Теорема об изменении количества движения
  8. Закон сохранения количества движения системы

Язык: русский, украинский

Размер: 248К

Пример расчета прямозубой цилиндрической передачи
Пример расчета прямозубой цилиндрической передачи. Выполнен выбор материала, расчет допускаемых напряжений, расчет на контактную и изгибную прочность.


Пример решения задачи на изгиб балки
В примере построены эпюры поперечных сил и изгибающих моментов, найдено опасное сечение и подобран двутавр. В задаче проанализировано построение эпюр с помощью дифференциальных зависимостей, провелен сравнительный анализ различных поперечных сечений балки.


Пример решения задачи на кручение вала
Задача состоит в проверке прочности стального вала при заданном диаметре, материале и допускаемых напряжениях. В ходе решения строятся эпюры крутящих моментов, касательных напряжений и углов закручивания. Собственный вес вала не учитывается


Пример решения задачи на растяжение-сжатие стержня
Задача состоит в проверке прочности стального стержня при заданных допускаемых напряжениях. В ходе решения строятся эпюры продольных сил, нормальных напряжений и перемещений. Собственный вес стержня не учитывается


Применение теоремы о сохранении кинетической энергии
Пример решения задачи на применение теоремы о сохранение кинетической энергии механической системы



Определение скорости и ускорения точки по заданным уравнениям движения
Пример решение задачи на определение скорости и ускорения точки по заданным уравнениям движения


Определение скоростей и ускорений точек твердого тела при плоскопараллельном движении
Пример решения задачи на определение скоростей и ускорений точек твердого тела при плоскопараллельном движении

Его движения , т.е. величина .

Импульс — величина векторная, совпадающая по направлению с вектором скорости .

Единица измерения импульса в системе СИ: кг м/с .

Импульс системы тел равен векторной сумме импульсов всех тел, входящих в систему:

Закон сохранения импульса

Если на систему взаимодействующих тел действуют дополнительно внешние силы, например, то в этом случае справедливо соотношение, которое иногда называют законом изменения импульса:

Для замкнутой системы (при отсутствии внешних сил) справедлив закон сохранения импульса:

Действием закона сохранения импульса можно объяснить явление отдачи при стрельбе из винтовки или при артиллерийской стрельбе. Также действие закона сохранения импульса лежит в основе принципа работы всех реактивных двигателей.

При решении физических задач законом сохранения импульса пользуются, когда знание всех деталей движения не требуется, а важен результат взаимодействия тел. Такими задачами, к примеру, являются задачи о соударении или столкновении тел. Законом сохранения импульса пользуются при рассмотрении движения тел переменной массы таких, как ракеты-носители. Большую часть массы такой ракеты составляет топливо. На активном участке полета это топливо выгорает, и масса ракеты на этом участке траектории быстро уменьшается. Также закон сохранения импульса необходим в случаях, когда неприменимо понятие . Трудно себе представить ситуацию, когда неподвижное тело приобретает некоторую скорость мгновенно. В обычной практике тела всегда разгоняются и набирают скорость постепенно. Однако при движении электронов и других субатомных частиц изменение их состояния происходит скачком без пребывания в промежуточных состояниях. В таких случаях классическое понятие «ускорения» применять нельзя.

Примеры решения задач

ПРИМЕР 1

Задание Снаряд массой 100 кг, летящий горизонтально вдоль железнодорожного пути со скоростью 500 м/с, попадает в вагон с песком массой 10 т и застревает в нем. Какую скорость получит вагон, если он двигался со скоростью 36 км/ч в направлении, противоположном движению снаряда?
Решение Система вагон+снаряд является замкнутой, поэтому в данном случае можно применить закон сохранения импульса.

Выполним рисунок, указав состояние тел до и после взаимодействия.

При взаимодействии снаряда и вагона имеет место неупругий удар. Закон сохранения импульса в этом случае запишется в виде:

Выбирая направление оси совпадающим с направлением движения вагона, запишем проекцию этого уравнения на координатную ось:

откуда скорость вагона после попадания в него снаряда:

Переводим единицы в систему СИ: т кг.

Вычислим:

Ответ После попадания снаряда вагон будет двигаться со скоростью 5 м/с.

ПРИМЕР 2

Задание Снаряд массой m=10 кг обладал скоростью v=200 м/с в верхней точке . В этой точке он разорвался на две части. Меньшая часть массой m 1 =3 кг получила скорость v 1 =400 м/с в прежнем направлении под углом к горизонту. С какой скоростью и в каком направлении полетит большая часть снаряда?
Решение Траектория движения снаряда – парабола. Скорость тела всегда направлена по касательной к траектории. В верхней точке траектории скорость снаряда параллельна оси .

Запишем закон сохранения импульса:

Перейдем от векторов к скалярным величинам. Для этого возведем обе части векторного равенства в квадрат и воспользуемся формулами для :

Учитывая, что , а также что , находим скорость второго осколка:

Подставив в полученную формулу численные значения физических величин, вычислим:

Направление полета большей части снаряда определим, воспользовавшись :

Подставив в формулу численные значения, получим:

Ответ Большая часть снаряда полетит со скоростью 249 м/с вниз под углом к горизонтальному направлению.

ПРИМЕР 3

Задание Масса поезда 3000 т. Коэффициент трения 0,02. Какова должна быть паровоза, чтобы поезд набрал скорость 60 км/ч через 2 мин после начала движения.
Решение Так как на поезд действует (внешняя сила), систему нельзя считать замкнутой, и закон сохранения импульса в данном случае не выполняется.

Воспользуемся законом изменения импульса:

Так как сила трения всегда направлена в сторону, противоположную движению тела, в проекцию уравнения на ось координат (направление оси совпадает с направлением движения поезда) импульс силы трения войдет со знаком «минус»: